If I have seen further it is by standing on the shoulders of giants.

Tuesday, March 27, 2012

A Universe of Self-replicating Code | George Dyson


What we're missing now, on another level, is not just biology, but cosmology. People treat the digital universe as some sort of metaphor, just a cute word for all these products. The universe of Apple, the universe of Google, the universe of Facebook, that these collectively constitute the digital universe, and we can only see it in human terms and what does this do for us?

We're missing a tremendous opportunity. We're asleep at the switch because it's not a metaphor. In 1945 we actuallydidcreate a new universe. This is a universe of numbers with a life of their own, that we only see in terms of what those numbers can do for us. Can they record this interview? Can they play our music? Can they order our books on Amazon? If you cross the mirror in the other direction, there really is a universe of self-reproducing digital code. When I last checked, it was growing by five trillion bits per second. And that's not just a metaphor for something else. It actually is. It's a physical reality.


[GEORGE DYSON:] When I started looking at the beginnings of the modern digital universe—at the origin of this two-dimensional address matrix—I became interested in the question of what had been done with it at the beginning. Of course, one of the things was the work on the hydrogen bomb.

Another thing that surprised and delighted me was to find that a Norwegian-Italian mathematical biologist and viral geneticist, Nils Aall Barricelli, had tried to come to Princeton in 1951, as soon as he heard this machine was being built. He had trouble getting a visa, so he finally shows up in early 1953 when the machine is running, and immediately begins these experiments, to see if he could inoculate this two-dimensional matrix with random strings of one-dimensional numbers that can self-replicate and cross-breed, and do all the things that we know that code does in biology, and see what happens.

And he observed. He was an observational biologist. He saw all sorts of behavior that he read all sorts of biological implications into. He was way too far ahead of the time, so no one paid attention and this was forgotten. We now live in a world where everything he dreamed of really did happen. And, for some reason, von Neumann never publicized Barricelli's work. I don't know if there was a personal rivalry or what happened, but von Neumann died, and his papers on self-reproducing automata were published posthumously [edited by Arthur W. Burks] and there was no mention of Barricelli. Part of it was this fear that it really would provoke the public. They called computers "electronic brains" at that time. It was scary enough that we might be building machines that would think. But the idea of producing artificial life was even more Frankenstein-like. I think that's one reason we never heard about that.

Just as we later worried about recombinant DNA, what if these things escaped? What would they do to the world? Could this be the end of the world as we know it if these self-replicating numerical creatures got loose?

But, we now live in a world where theydid get loose—a world increasingly run by self-replicating strings of code. Everything we love and use today is, in a lot of ways, self-reproducing exactly as Turing, von Neumann, and Barricelli prescribed. It's a very symbiotic relationship: the same way life found a way to use the self-replicating qualities of these polynucleotide molecules to the great benefit of life as a whole, there's no reason life won't use the self-replicating abilities of digital code, and that's what's happening. If you look at what people like Craig Venter and the thousand less-known companies are doing, we're doing exactly that, from the bottom up.

The defining moment for me was when I went back to Princeton to visit the scene of all of this. I believe in revisiting the physical scene of something, because you get cues that just aren't there from looking at documents. I went down in the basement to find the room where they had started building this machine in 1946. It's the storeroom in the basement next to the boiler room at the Institute for Advanced Study. It was the worst possible room in the building. I went back there in 2005, 60 years later, and it happened to be the main server room for the Institute. The Institute for Advanced Study is now connected to the entire rest of the world, and they had 54 megabits per second of fiber-optic data coming in and out.

When the engineer there on duty gave me a tour the most remarkable thing was an entire server, very high-end, very sophisticated—a few years ago, we would have called it a supercomputer. It was sitting there on the top shelf, and all the fiber-optic lines were going through it, and its sole, 24 hour a day job, was monitoring all the data coming in, trying to keep out self-replicating strings of code—trying to guard against what Barricelli had been trying to do at the beginning. So clearly, Barricelli's experiment was a tremendous success. It's almost so successful we can't see it, because it's happening all around us.

What's, in a way, missing in today's world is more biology of the Internet. More people like Nils Barricelli to go out and look at what's going on, not from a business or what's legal point of view, but just to observe what's going on.

Many of these things we read about in the front page of the newspaper every day, about what's proper or improper, or ethical or unethical, really concern this issue of autonomous self-replicating codes. What happens if you subscribe to a service and then as part of that service, unbeknownst to you, a piece of self-replicating code inhabits your machine, and it goes out and does something else? Who is responsible for that? And we're in an increasingly gray zone as to where that's going.

The most virulent codes, of course, are parasitic, just as viruses are. They're codes that go out and do things, particularly codes that go out and gather money. Which is essentially what these things like cookies do. They are small strings of code that go out and gather valuable bits of information, and they come back and sell it to somebody. It's a very interesting situation. You would have thought this was inconceivable 20 or 30 years ago. Yet, you probably wouldn't have to go … well, we're in New York, not San Francisco, but in San Francisco, you wouldn't have to go five blocks to find five or 10 companies whose income is based on exactly that premise. And doing very well at it.

Walking over here today, just three blocks from my hotel, the street right out front is blocked off. There are 20 police cars out there and seven satellite news vans, because Apple is releasing a new code. They're couching it as releasing a new piece of hardware, but it's really a new gateway into the closed world of Apple's code. And that's enough to block human traffic.

Why is Apple one of the world's most valuable companies? It's not only because their machines are so beautifully designed, which is great and wonderful, but because those machines represent a closed numerical system. And they're making great strides in expanding that system. It's no longer at all odd to have a Mac laptop. It's almost the normal thing.

But I'd like to take this to a different level, if I can change the subject... Ten or 20 years ago I was preaching that we should look at digital code as biologists: the Darwin Among the Machines stuff. People thought that was crazy, and now it's firmly the accepted metaphor for what's going on. And Kevin Kelly quoted me in Wired, he asked me for my last word on what companies should do about this. And I said, "Well, they should hire more biologists."

But what we're missing now, on another level, is not just biology, but cosmology. People treat the digital universe as some sort of metaphor, just a cute word for all these products. The universe of Apple, the universe of Google, the universe of Facebook, that these collectively constitute the digital universe, and we can only see it in human terms and what does this do for us?

We're missing a tremendous opportunity. We're asleep at the switch because it's not a metaphor. In 1945 we actuallydidcreate a new universe. This is a universe of numbers with a life of their own, that we only see in terms of what those numbers can do for us. Can they record this interview? Can they play our music? Can they order our books on Amazon? If you cross the mirror in the other direction, there really is a universe of self-reproducing digital code. When I last checked, it was growing by five trillion bits per second. And that's not just a metaphor for something else. It actually is. It's a physical reality.

Continue reading - A Universe of Self-replicating Code

No comments:

Post a Comment